A Revenue Forecast Comparison for the Automobile Industry Using Neural and Linear Regression
DOI:
https://doi.org/10.29327/2384439.3.3-4Keywords:
Automobile industry, revenue, neural networks, linear regressionAbstract
Artificial neural networks (ANNs) are tools used in the construction of complex system models. Their main characteristics include: learning and the reduction of the volume of data for the modelling. This exploratory study compared the performance of the models based on multiple linear regression and the neural networks to forecast the revenues of the automobilistic industry. We used secondary data, regarding the period from 1980 to 2001, collected from ANFAVEA (2002). The results showed that the average error of the forecast model based on neural networks was smaller than the model based on multiple linear regression.
Downloads
References
ANFAVEA 2002. Anuário Estatístico da Indústria Automobilística Brasileira. São Paulo: Associação nacional dos fabricantes de Veículos Automotores, 2002.
BRAGA, Antônio de Pádua, LUDEMIR, Teresa Bernarda, CARVALHO, André Carlos Ponde de Leon Ferreira. Redes Neurais e Artificiais, Teoria e Aplicações. Rio de Janeiro: LTC Editora, 2000.
CARTACHO, Marcelo Soares; SOUZA, Antônio Artur. A utilização de um modelo composto por algoritmos genéticos e redes neurais no processo de seleção de carteiras. Salvador: XXVI ENANPAD 2002, 22 a 25 de setembro de 2002.
FREITAS, Sander Oliveira; SOUZA, Antônio Artur. Utilização de um Modelo Baseado em Redes Neurais para a Precificação de Opções. Salvador: XXVI ENANPAD 2002, 22 a 25 de setembro de 2002.
GUJARATI, Damodar N. Econometria Básica. São Paulo: Makron books. 2000.
HAYKIN, Simon. Redes Neurais, Princípios e Prática. Porto alegre: Editora Bookman, 2a edição, 2001.
HILL, Carter, GRIFFITHS, William, JUDGE, George. Econometria. São Paulo: Ed. Saraiva, 2000.
LEVINE, David M., BERENSON, Mark L., STEPHAN, David. Estatística: Teoria e Aplicações. Rio de Janeiro, LTC, 2000.
LOESCH, Cláudio; SARI, Solange T. Redes Neurais – Fundamentos e Modelos. Blumenau: Editora da FURB, 1996.
MOLITERNO, D. Montadoras prometem investir R$ 95 bi no Brasil instigados por competição chinesa e programa do governo. 2024, Disponível em: <https://www.cnnbrasil.com.br/economia/macroeconomia/montadoras-prometem-investir-r-95-bi-no-brasil-instigados-por-competicao-chinesa-e-programa-do-governo/>. Acesso em: 20/01/2025.
NASCIMENTO JR, Cairo L; YONEYAMA, Takashi. Inteligência Artificial, em Controle e Automação. São Paulo: Editora Edgard Blucher Ltda / FAPESP, 2000.
OHMAE, Kenichi. Voltando à Estratégia. Rio de Janeiro: Editora Campus, 2a edição, 1998.
PORTUGAL, Marcelo S. & FERNANDEZ, Luiz G. L. Redes Neurais Artificiais e Previsão de Séries Econômicas: Uma Introdução, mimeo.
SILVA, Cleide. Fábricas brasileiras estão entre as mais modernas. São Paulo: OESP – Caderno de economia, indústria automobilística, 23 de julho de 2000, página B7.
SIMONSEN, Mario H. & CYSNE, Rubens C. Macroeconomia. Rio de Janeiro: Ed. FGV/Atlas, 1995.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Roberto Giro Moori, André Ng, Roberto Ramos de Morais, Plácido de Jesus da Silva Leitão Junior

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Policy
By submitting a manuscript for publication in the journal Advances in Global Innovation & Technology (@_GIT), authors agree, in advance and unrestrictedly, to the following terms:
- The authors retain the copyright and grant to the Journal Advances in Global Innovation & Technology (@_GIT) the right of first publication of the manuscript, without any financial burden, and waive any other remuneration for its publication in the Journal of Advances in Global Innovation & Technology (@_GIT).
- Upon submission to the Journal of Advances in Global Innovation & Technology (@_GIT), the manuscript is automatically licensed under the Creative Commons Attribution License, which allows the sharing of the work with acknowledgment of authorship and initial publication in the Journal Advances in Global Innovation & Technology (@_GIT).
- Authors are authorized to enter into additional contracts separately, for non-exclusive distribution of the version of the work published in the Journal Advances in Global Innovation & Technology (@_GIT) (publish in repositories or as a book chapter), with acknowledgment of the initial publication in the Journal Advances in Global Innovation & Technology (@_GIT), provided that such agreement does not imply an endorsement of the content of the manuscript or the new vehicle by the Journal of Advances in Global Innovation & Technology (@_GIT).
- Authors are allowed and encouraged to publish and distribute their work online, in institutional repositories, for example after the editorial process is completed.
- The authors warrant that they have obtained proper permission from their employers for the transfer of rights under this agreement, if those employers own any copyright in the manuscript. In addition, the authors assume any and all responsibility for possible copyright infringements of these employers, exempting Advances in Global Innovation & Technology (@_GIT) from any and all liability in this regard.
- The authors assume all responsibility for the content of the work, including the due and necessary authorizations for the disclosure of data collected and results obtained, exempting the Journal of Advances in Global Innovation & Technology (@_GIT) from any and all liability in this regard.